199 research outputs found

    A Short-Range FMCW Radar-Based Approach for Multi-Target Human-Vehicle Detection

    Get PDF
    In this article, a new microwave-radar-based technique for short-range detection and classification of multiple human and vehicle targets crossing a monitored area is proposed. This approach, which can find applications in both security and infrastructure surveillance, relies upon the processing of the scattered-field data acquired by low-cost off-The-shelf components, i.e., a 24 GHz frequency-modulated continuous wave (FMCW) radar module and a Raspberry Pi mini-PC. The developed method is based on an ad hoc processing chain to accomplish the automatic target recognition (ATR) task, which consists of blocks performing clutter and leakage removal with an infinite impulse response (IIR) filter, clustering with a density-based spatial clustering of applications with noise (DBSCAN) approach, tracking using a Benedict-Bordner alphaalpha -etaeta filter, features extraction, and finally classification of targets by means of a kk-nearest neighbor ( kk-NN) algorithm. The approach is validated in real experimental scenarios, showing its capabilities in correctly detecting multiple targets belonging to different classes (i.e., pedestrians, cars, motorcycles, and trucks)

    Hyphal morphology, molecular genetics and phylogenetic relationships among commensal and pathogenic vulvovaginal isolates of Candida albicans

    Get PDF
    Vaginal candidiasis is a common disorder in women of childbearing age, caused primarily by Candida albicans. Since C. albicans is a commensal fungus of the vaginal mucosa, a long-standing question is how the fungus switches from being a harmless commensal to a virulent pathogen. Clinical studies and murine vaginitis models suggest that host inflammatory processes drive the onset of symptomatic infection. In previous work with fresh clinical samples, we found that the pro-inflammatory cell wall polysaccharide β-glucan is largely masked from immune recognition during vulvovaginal infection. Enhanced β-glucan availability was only found in hyphae from symptomatic patients with strong neutrophil infiltration. There was high variability in levels of β-glucan exposure and hyphal morphology among colonizing and infection-associated isolates, and we reasoned that this could be explained by fungal-intrinsic factors and/or host-associated traits. We assayed several aspects of C. albicans isolated from symptomatic and asymptomatic individuals to determine any associations between fungal-intrinsic traits and virulence: MLST analysis, sequencing of the gene encoding the candidalysin toxin, and propensity to form hyphal cells. Preliminary results suggest that none of these indicators correlates with isolates causing symptomatic infection, indicating that host-intrinsic mechanisms may play the most important role in the occurrence of symptomatic infections

    phaseless tomographic inverse scattering in banach spaces

    Get PDF
    In conventional microwave imaging, a hidden dielectric object under test is illuminated by microwave incident waves and the field it scatters is measured in magnitude and phase in order to retrieve the dielectric properties by solving the related non-homogenous Helmholtz equation or its Lippmann-Schwinger integral formulation. Since the measurement of the phase of electromagnetic waves can be still considered expensive in real applications, in this paper only the magnitude of the scattering wave fields is measured in order to allow a reduction of the cost of the measurement apparatus. In this respect, we firstly analyse the properties of the phaseless scattering nonlinear forward modelling operator in its integral form and we provide an analytical expression for computing its Frechet derivative. Then, we propose an inexact Newton method to solve the associated nonlinear inverse problems, where any linearized step is solved by a Lp Banach space iterative regularization method which acts on the dual space Lp* . Indeed, it is well known that regularization in special Banach spaces, such us Lp with 1 < p < 2, allows to promote sparsity and to reduce Gibbs phenomena and over-smoothness. Preliminary results concerning numerically computed field data are shown

    Differences in proteolytic activity and gene profiles of fungal strains isolated from the total parenteral nutrition patients

    Get PDF
    Fungal infections constitute a serious clinical problem in the group of patients receiving total parenteral nutrition. The majority of species isolated from infections of the total parenteral nutrition patients belong to Candida genus. The most important factors of Candida spp. virulence are the phenomenon of “phenotypic switching,” adhesins, dimorphism of fungal cells and the secretion of hydrolytic enzymes such as proteinases and lipases, including aspartyl proteinases. We determined the proteolytic activity of yeast-like fungal strains cultured from the clinical materials of patients receiving total parenteral nutrition and detected genes encoding aspartyl proteinases in predominant species Candida glabrata—YPS2, YPS4, and YPS6, and Candida albicans—SAP1–3, SAP4, SAP5, and SAP6. C. albicans released proteinases on the various activity levels. All C. glabrata strains obtained from the clinical materials of examined and control groups exhibited secretion of the proteinases. All 13 isolates of C. albicans possessed genes SAP1–3. Gene SAP4 was detected in genome of 11 C. albicans strains, SAP5 in 6, and SAP6 in 11. Twenty-six among 31 of C. glabrata isolates contained YPS2 gene, 21 the YPS4 gene, and 28 the YPS6 gene. We observed that clinical isolates of C. albicans and C. glabrata differed in SAPs and YPSs gene profiles, respectively, and displayed differentiated proteolytic activity. We suppose that different sets of aspartyl proteinases genes as well as various proteinase-activity levels would have the influence on strains virulence

    Modular assembly of proteins on nanoparticles

    Get PDF
    Generally, the high diversity of protein properties necessitates the development of unique nanoparticle bio-conjugation methods, optimized for each different protein. Here we describe a universal bio-conjugation approach which makes use of a new recombinant fusion protein combining two distinct domains. The N-terminal part is Glutathione S-Transferase (GST) from Schistosoma japonicum, for which we identify and characterize the remarkable ability to bind gold nanoparticles (GNPs) by forming gold–sulfur bonds (Au–S). The C-terminal part of this multi-domain construct is the SpyCatcher from Streptococcus pyogenes, which provides the ability to capture recombinant proteins encoding a SpyTag. Here we show that SpyCatcher can be immobilized covalently on GNPs through GST without the loss of its full functionality. We then show that GST-SpyCatcher activated particles are able to covalently bind a SpyTag modified protein by simple mixing, through the spontaneous formation of an unusual isopeptide bond

    Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Yeasts Is Contingent on Robust Reference Spectra

    Get PDF
    BACKGROUND: Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for yeast identification is limited by the requirement for protein extraction and for robust reference spectra across yeast species in databases. We evaluated its ability to identify a range of yeasts in comparison with phenotypic methods. METHODS: MALDI-TOF MS was performed on 30 reference and 167 clinical isolates followed by prospective examination of 67 clinical strains in parallel with biochemical testing (total n = 264). Discordant/unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene cluster. PRINCIPAL FINDINGS: Twenty (67%; 16 species), and 24 (80%) of 30 reference strains were identified to species, (spectral score ≥2.0) and genus (score ≥1.70)-level, respectively. Of clinical isolates, 140/167 (84%) strains were correctly identified with scores of ≥2.0 and 160/167 (96%) with scores of ≥1.70; amongst Candida spp. (n = 148), correct species assignment at scores of ≥2.0, and ≥1.70 was obtained for 86% and 96% isolates, respectively (vs. 76.4% by biochemical methods). Prospectively, species-level identification was achieved for 79% of isolates, whilst 91% and 94% of strains yielded scores of ≥1.90 and ≥1.70, respectively (100% isolates identified by biochemical methods). All test scores of 1.70-1.90 provided correct species assignment despite being identified to "genus-level". MALDI-TOF MS identified uncommon Candida spp., differentiated Candida parapsilosis from C. orthopsilosis and C. metapsilosis and distinguished between C. glabrata, C. nivariensis and C. bracarensis. Yeasts with scores of <1.70 were rare species such as C. nivariensis (3/10 strains) and C. bracarensis (n = 1) but included 4/12 Cryptococcus neoformans. There were no misidentifications. Four novel species-specific spectra were obtained. Protein extraction was essential for reliable results. CONCLUSIONS: MALDI-TOF MS enabled rapid, reliable identification of clinically-important yeasts. The addition of spectra to databases and reduction in identification scores required for species-level identification may improve its utility

    Horizontal Transmission of Candida albicans and Evidence of a Vaccine Response in Mice Colonized with the Fungus

    Get PDF
    Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines designed to prevent human disseminated candidiasis
    corecore